pdf with other exercises: [[20241121_DiskMat_Serie9.pdf]]
references

9.5)b)
Let R,+,,0,,1 be a ring and a,bR arbitrary.
For 1ab to be a unit, the following must be true for a xR:

(1ab)x=x(1ab)=1(1)(def. unit)

Assume x:=(1ab)1. Then condition (1) is fulfilled, and 1ab is a unit.
From (1), we get:

(1ab)x=1(from (1))xabx=1(def ring, right distr.)1+xabx+abx=1+1+abx(-1 left, +abx right)1+x+0=0+abx(G3)x1=abx(2)(G2, commutativity)

We can also transform the second part of (1):

x(1ab)=1(from (1))xxab=1(def ring, left distr.)1+xxab+xab=1+1+xab(-1 left, +xab right)1+x+0=0+xab(G3)x1=xab(3)(G2, commutativity)

From Lemma 5.17 (ii), we know that (a)b=(ab) for some a,bR. We can use the lemma to show that a(b)=(ab):

(a)b=0+(a)b(G2)=a0+(a)b(Lemma 5.17 (i))=a(b+b)+(a)b(G3)=a(b)+ab+(a)b(left distr.)=a(b)+(aa)b(right distr.)=a(b)+0b(G3)=a(b)(4)(Lemma 5.17 (i))

This means that

(a)b=a(b)=(ab)(5)

To show that 1ba is a unit, we have to show that, for yR

(1ba)y=y(1ba)=1(def. unit)

According to the hint, we assume that y:=1+bxa. We have to show that

(1ba)(1+bxa)=(1+bxa)(1ba)=1(def. unit)

To show (1ba)(1+bxa)=1:

(1ba)(1+bxa)=(1ba)1+(1ba)bxa(left distr.)=1ba+bxababxa(right distr., 1 neutral element)=1ba+bxab((abx)a)(2x ass. )=1ba+bxab((x1))a(2)=1ba+bxab(xaa)(right distr., 1 ne)=1ba+bxabxa+ba(left distr., Lemma 5.17 (iii))=1ba+ba+bxabxa(comm.)=1+0+0(G3)=1(G2)

To show that (1+bxa)(1ba):

(1bxa)(1ba)=1(1ba)+bxa(1ba)(right distr.)=1ba+bxa+bxa(ba)(left distr., 1 ne)=1ba+bxabxaba(5)=1ba+bxab((xab)a)(2x ass )=1ba+bxab((x1)a)(3)=1ba+bxab(xaa)(right distr., 1 ne)=1ba+bxabxa+ba(left distr., Lemma 5.17 (iii))=1ba+ba+bxabxa(comm.)=1+0+0(G3)=1(G2)

Since 1ab is a unit and (1ba)(1+bxa)=1 and (1+bxa)(1ba)=1, according to definition 5.20 (definition unit) aba is also a unit .